您现在所的位置:创意网 - 生活创艺 - 疯狂电子

赛灵思FPGA DIY系列(1):车牌号定位与识别系统(2)

标签:疯狂电子日期:2016-01-28 05:06小编:WCCEO热度:

  G= (B+G+R)/3                                (2)

  3.3 预处理及边缘提取

图2 预处理及边缘提取流程图

  
图2 预处理及边缘提取流程图

  3.4 平滑处理

  对于受噪声干扰严重的图象,由于噪声点多在频域中映射为高频分量,因此可以在通过低通滤波器来滤除噪声,但实际中为了简化算法也可以直接在空域中用求邻域平均值的方法来削弱噪声的影响,这种方法称为图象平滑处理。例如,某一象素点的邻域S 有两种表示方法:8邻域和4邻域分别对应的邻域平均值为

 

求邻域平均值的方法

  其中,M 为邻域中除中心象素点f(i,j) 之外包括的其它象素总数,对于4邻域M=4,8 邻域M=8。然而,邻域平均值的平滑处理会使得图象灰度急剧变化的地方,尤其是物体边缘区域和字符轮廓等部分产生模糊作用。为了克服这种平均化引起的图象模糊现象,我们给中心点象素值与其邻域平均值的差值设置一固定的阈值,只有大于该阈值的点才能替换为邻域平均值,而差值不大于阈值时,仍保留原来的值,从而减少由于平均化引起的图象模糊。

  由上图可以归纳起来以下方面:原始图像清晰度比较高,从而简化了预处理,结合MATLAB实验过程,得出不是每一种图像处理之初都适合滤波和边界增强。本次汽车车牌的识别,为了保存更多的有用信息。

  3.5 牌照的定位

  牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。由于牌照图象在原始图象中是很有特征的一个子区域,确切说是水平度较高的横向近似的长方形,它在原始图象中的相对位置比较集中,而且其灰度值与周边区域有明显的不同,因而在其边缘形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割。

  自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。流程图如下:

图3 牌照的定位流程图

  图3 牌照的定位流程图

顶一下
(0)
0%
踩一下
(0)
0%